

Electric Vehicle Supply Equipment and Infrastructure Technical Conference and EV Readiness Working Group

Session 3: April 7, 2020

	Session Three Agenda // April 7, 2020
2:00 PM	Zeryai Hagos, Department of Public Service • Introduction
2:10 PM	Kevin Miller & Mike Walters, ChargePoint • Reactions for Forecasted Level 2 and DCFC Developer Economics
2:30 PM	Chris King, SVP Policy & Regulatory Affairs, Siemens eMobility • Open standards, interoperability, and smart charging
2:50 PM	Annie Gilleo, Greenlots • Managed Charging Strategies, Program Flexibility
3:10 PM	Andrew Dick, ElectrifyAmerica • Reactions to Forecasted DCFC Developer Economics
3:30 PM	 Facilitated Discussions Bundling and Cost Management Developer Economics Future Proofing
5:00 PM	Closing Remarks

Submit Questions To

EVSE@DPS.NY.GOV

Closing Remarks

Upcoming Meetings

COVID-19 Informational Session

- 2:30 pm 3:30 pm, 4/10/2020
- COVID-19 NYS, Programmatic and Regulatory Response
- Open Q&A Session

Written comments – white paper

- April 27, 2020 initial comments due
- May 11, 2020 reply comments due

Key white paper questions in Feb 5, 2020 Secretary's Notice, DMM #18-E-0138

-chargepoin+

Reaction to EVSE Developer Economics

Presenter: Kevin George Miller

EV Make-Ready Conference – Session Three

New York Public Service Commission Docket No. 18-E-0138

April 7, 2020

There is no ubiquitous EV charging business model

Giving drivers a place to plug in helps to achieve a variety of operating & business goals

Offering charging services is more than just a direct revenue model for commercial site hosts

Wide Variability in DCFC CapEx Costs

Description	Two 50kW Class Chargers					Two 150kW Class Chargers			
Description		Low		High		Low		High	
Site Acquisition	\$	-	\$	25,000	\$	-	\$	25,000	
DCFC Equipment	\$	60,000	\$	100,000	\$	120,000	\$	220,000	
Electrical Panels and Switchgear	\$	6,000	\$	20,000	\$	14,000	\$	29,000	
Engineering, Design, Permitting	\$	5,000	\$	14,000	\$	8,000	\$	16,000	
Utility Upgrades	\$	4,000	\$	50,000	\$	35,000	\$	100,000	
Project Management	\$	8,000	\$	12,000	\$	9,000	\$	18,500	
Construction Costs	\$	45,000	\$	200,000	\$	90,000	\$	260,000	
Total	\$	128,000	\$	421,000	\$	276,000	\$	668,500	

+ Data from table is not specific to ChargePoint equipment and reflects trends in cost of development and deployment around the country.

DCFC Cost Assumptions

Internal Cost Assumptions (Four-Port Deployment)

	4 x 5	0kW	I	4 x 1	50k	W
	Low		High	Low		High
Make Ready	\$ 136,000	\$	592,000	\$ 312,000	\$	847,000
Equipment	\$ 120,000	\$	200,000	\$ 240,000	\$	440,000
Total	\$ 256,000	\$	842,000	\$ 552,000	\$	1,337,000

Whitepaper Cost Assumptions

	DCFC Capital Expenditures Costs											
	Upsta	ate	NY Me	etro								
	4 X 150 kW	4 X 50 kW	4 X 150 kW	4 X 50 kW								
Make-Ready	\$200,000	\$112,500	\$363,881	\$204,760								
Charger	\$200,000	\$120,000	\$200,000	\$120,000								
Total	\$400,000	\$232,500	\$563,881	\$324,760								

Make Ready - Due to variability in utility and customer side make ready, site make ready is consolidated.

Comparing DCFC Cost Assumptions

Comparison of Upstate Assumptions

		4 x 50kW					4 x 15	0k	W
		Low			High		Low		High
	Make Ready	\$	136,000	\$	592,000	\$	312,000	\$	847,000
	Equipment	\$	120,000	\$	200,000	\$	240,000	\$	440,000
	Total	\$	256,000	\$	842,000	\$	552,000	\$	1,337,000
	Upstate Delta	\$	(23,500)	\$	(609,500)	\$	(152,000)	\$	(937,000)
Whitep	aper - Upstate	\$	232,500	\$	232,500	\$	400,000	\$	400,000

Comparison of NYC Metro Assumptions

		4 x 50kW					4 x 1	50k	W
		Low		Low High			Low		High
	Make Ready	\$	136,000	\$	592,000	\$	312,000	\$	847,000
	Equipment	\$	120,000	\$	200,000	\$	240,000	\$	440,000
	Total	\$	256,000	\$	842,000	\$	552,000	\$	1,337,000
NYC/Metro Delta		\$	68,760	\$	(517,240)	\$	11,881	\$	(773,119)
Whitepaper - NYC Metro			324,760		324,760		563,881		563,881

DCFC OpEx Cost Drivers

- + If in-depth modeling is needed, best to use conservative assumptions
 - Whitepaper contrasts 10-year IRR starting w/ 3 vs. 2 sessions/port/day (Upstate) with four 50kW EVSE. However, 1 to 1½ sessions/port/day may be more appropriate.
- + Higher-power stations, particularly in early years of the program, will increase costs without appreciably improving throughput (i.e., charging time per vehicle).

Wide Variability in Level 2 CapEx Installation Costs

Light-Duty Electric Vehicle Supply Equipment Type										
Goographic Pogion	Equip	ment	Instal	lation						
Geographic Region	Low	High	Low	High						
Upstate	\$4,500	\$7,210	\$6,000	\$15,000						
NYC Metro	\$1,500	\$4,500	\$6,000	\$30,000						

+ Data from table is not specific to ChargePoint equipment and reflects trends in cost of development and deployment around the country.

Takeaways

- CapEx costs for L2 and DCFC vary significantly across utility service territories.
 - Higher costs may be unavoidable given on-site needs and program requirements.
 - Workplace goals (79K ports) may be difficult to achieve at lower make-ready value.
 - Allowing greater flexibility on a site-by-site basis would allow NY to learn from early deployments and fine tune program requirements at a mid-point review.
- + OpEx costs also vary wildly across utility service territories.
 - Impacted by evolving charging behavior, rates, exogenous factors, etc.
 - Low utilization can be exacerbated if programs require a higher number of ports-persite than can be supported for given levels of EV adoption.
 - OpEx impact from decisions about CapEx requirements (e.g., power level or minimum ports) can inadvertently exclude otherwise appropriate program participants.

-chargepoint

eMobility® at Siemens

Benefits of EV charging to Non-EV Ratepayers

¹ – percentage is lower for oil-producing states

Sources: Energy Information Administration, Union of Concerned Scientists, Siemens

² – EV charging revenue paid for T&D portion of electricity rates; assumes 90% of charging is off-peak and, therefore, minimal T&D investment is required

Grid Simulation: Unmanaged Charging Behavior

Based on a real distribution grid

- 50% of vehicles are EVs
- City of 20,000

These are *long-dwell* use cases

DC Fast Charging at opportunity locations is not a good candidate for managed charging

Grid Benefits from Smart Charging

SIEMENS Ingenuity for life

Managed charging can:

- Improve grid economics by achieving higher utilization rates of assets
- Reduce emissions by aligning charging with surplus renewable generation
- Reduce grid stress and maintain grid stability by minimizing charging ramp rates and reducing the strain on distribution transformers
- Reduce the need for new peak generation and distribution capacity resulting from EVs charging during peak hours

In sum: preserve the benefits of increased revenue from increased kWh throughput through the T&D grid

Effects on unmanaged charging:

FIGURE 3: EV IMPACT ON TRANSFORMERS IN THE SACRAMENTO MUNICIPAL UTILITY DISTRICT SERVICE TERRITORY THROUGH 2030

The Market Opportunity

Figure A-4: Real-Time Price Duration Curves by Region

Ingenuity for life

Source: 2018 State of the Market Report for the New York ISO Markets

Who Benefits from Smart Charging?

EV Driver

Site Host

Utilities

- ✓ Lower fuel costs
- Information
 - Cost to charge
 - kWh quantity
- Convenience
- ✓ Seamless payment

- Improved utilization
- Demand charge optimization
- ✓ Management tools
- Equipment monitoring

- ✓ Promote EV adoption
- ✓ Load visibility
- ✓ Peak demand management
- ✓ Grid and market integration

Elements of Smart Charging

LEVERAGING THE FLEXIBILITY OF EVS

Interoperability

The need for standards

To drive down costs and, consequently, prices to customers by having manufacturers compete to deliver products to the same specification

(Note: Standards are for minimum functionality, manufacturers can always add more features)

To lower the risk of stranded assets

by ensuring that different EVSPs can interface to chargers in a vendor-neutral manner (critical in case of business failure/exit of an EVSP)

- by enabling EV drivers to easily pay for charging at any public site, and
- by enabling charger owners to easily switch EVSPs or EVSE suppliers (for new units) if desired

Technical (Metering and Communications) Standards Home, MUD, Workplace, Fleet Charging

Communications Standards – Public Charging

Unrestricted © Siemens AG 2020

Initial Comments

White paper: more needs to be known before large-scale active managed charging programs can be offered statewide

Comments: smart charging is already prevalent as DR use case; other use cases are evolving. Programs like smart thermostats provide good analogues. TOU pricing is foundational to derive smart charging benefits.

Interoperability

White paper: recommends encouraging open communications protocols, open access networks, and interoperability without penalizing proprietary technology

Comment: how can interoperability be achieved with communications protocols & payment to align with Commission precedent that requires connector interoperability while allowing proprietary technologies?

Next step on standards

White paper: establish working group to recommend baseline standards in engineering and safety, payment, communications, and interoperability

Comments: The WG should have actionable deliverables with specific timelines to be effective. Leverage work already achieved in other VGI WGs.

